Künstliche Intelligenz und Blockchain im Tandem zum Erfolg

Künstliche Intelligenz (KI) und Blockchain intelligent kombiniert, ist ein Meilenstein zur technologischen Zukunft.

Beide Technologien sind autark immer mehr auf dem Vormarsch. Ob bewusst oder unbewusst, sind die Techniken in unserem Leben angekommen. Vielfach merken wir dies nicht. Noch sind Kombinationen die Ausnahme. Leider!

Gerade die KI vollzieht einen stillen Siegeszug in unserem Zuhause, unser Alltag wird von Künstlicher Intelligenz unterstützt. Ohne diese technische Unterstützung würden Stromanbieter viel unruhiger schlafen – Stromausfälle wären an der Tagesordnung. Die gewaltigen Strommengen über die europäischen Trassen zu leiten und deren Verteilung ist ohne intelligente Systeme nicht zu handhaben.
Ja, auch wenn es vielen Menschen nicht behagt, die Systeme arbeiten in gewissem Umfang autonom. Alles muss blitzschnell „über die Bühne“ gehen. Sonst gehen bei uns wortwörtlich sehr schnell die Lichter aus.

Auch digitale Zahlungsanbieter wären ohne die Künstliche Intelligenz und deren Techniken aufgeschmissen. Schnelligkeit und der Komfort müssen in Einklang gebracht werden. KI-Betrugsfrüherkennung versprechen neue Möglichkeiten durch zweckmäßigeres Risikomanagement in Echtzeit.

Blockchain gibt Sicherheit

Blockchain ist gerade durch den Bitcoin gerade in aller Munde. Dabei sind Digitalwährungen nur ein winziger Anwendungsbereich für dieses dezentrale und mehrfache Vorhandensein gewisser Datensätze. Dies macht das System sicher!
Es ist bisher unmöglich alle Datensätze auf einmal zu verändern – zu manipulieren.

“Bisher” ist bewusst gewählt. Auch wenn es die Jünger der Blockchain-Technologie nicht gerne hören oder schlichtweg nicht wissen (wollen), wird die Zeit kommen, wo Quantencomputer in falschen Händen die Technologie an ihre Grenzen bringen wird. Zu diesem Thema werde ich in naher Zukunft einen separaten Artikel schreiben.

Mit der beste Schutz ist, wenn der Schwarm an Blockchain-Servern groß und deren Standorte dezentral sind. Vereinfacht gesagt: Je mehr gleichartige Datensätze es gibt, desto schwerer ist es, alle auf einmal zu manipulieren.

Was muss passieren?

Die Künstliche Intelligenz hat ein Problem! Um autark zu arbeiten, sind sehr große Mengen an Lerndaten notwendig. Diese werden oftmals rudimentär eingespielt, benutzt und fließend dann mit Echtdaten in ein System. Hier ist der Knackpunkt: Lerndaten lassen sich auf einfache Weise manipulieren!

Künstliche Intelligenz und Werbung haben riesiges ungenutztes Potenzial

Auch wenn Ihnen suggeriert wird, dass Werbung auf der Höhe der Zeit ist, glauben Sie es nicht! Das Potenzial ist fast unerschöpflich.
Sie können es auch mit einer Goldmine vergleichen, wo fertige Goldbarren rumliegen und warten endlich gehoben zu werden.

Künstliche Intelligenz und Werbung sind füreinander gemacht! Umso bedauerlicher, dass es bis heute so gut wie keine ernsthaften Anwendungen zu finden sind, die der digitalen Verkaufsförderung dienen.

Trotz aller technischen Innovationen wird weiterhin wie seit Jahrzehnten zumeist mit starren Plakaten geworben. Ja, zugegeben, manch eine Plakatwand ist einem Flatscreen oder einer Großleinwand gewichen, aber das Gießkannenprinzip ist geblieben: Werbung für jedermann – von Individualisierung keine Spur. Schade!

Vielleicht schimmert es Ihnen schon worauf ich hinaus will: personen- und situationsbezogene Werbung.
Fast jedem Werbenden und jeder Agentur läuft es jetzt kalt den Rücken runter: Datenschutz – geht nicht!

Falsch, total falsch. Vereinfacht gesagt, was Sie sehen, darf auch die künstliche Intelligenz sehen! So wie Sie entscheiden, wen Sie ansprechen oder einen Flyer in die Hand drücken, kann auch die künstliche Intelligenz entscheiden, welche Werbung auf dem Flatscreen in dieser und jener Sekunde gezeigt werden soll.

Hört sich simpel an, ist es auch. Schon im Jahr 2019 wurde ein Werbeträger entwickelt, welcher mit einer Kamera versehen ist, einen Mini-PC integriert hat und Personen Werbung anbieten kann, die der Betreiber im Vorfeld definiert hat.


Beispiel gefällig? Über die Strandpromenade spazieren Menschen mit sehr starkem Sonnenbrand, was bietet sicher besser an als mit einem Gehwegaufsteller / Kundenstopper vor der Apotheke für Sonnencreme und After Sun Lotion zu werben. Völlig automatisch.

Ein schmutziges Auto auf der Straße lässt sich auch völlig unproblematisch erkennen. Auf einer Großleinwand – in Nähe der nächsten Ampel – eine Waschanlage “um die Ecke” zu empfehlen, wird viel Anklang finden.
Was Sie natürlich nicht dürfen, ist das schmutzige Auto auf der Großleinwand zeigen und so den Fahrer verärgern. Eine wirklich dumme Idee, denn das zur Schau stellen verstößt in vielen Ländern gegen Gesetze und kann auch in Bezug auf eine Marketingkampagne gewaltig nach hintern losgehen.

Dies sind zwei alltägliche Beispiele, die sich jedoch beliebig verfeinern lassen bis hin zu firmenspezifischen Anwendungen.

Künstliche Intelligenz in Zeiten von Corona

Die Künstliche Intelligenz (KI) ist längst in unserem Alltag angekommen. Unabhängig der Coronakrise und andeutender Finanzkrise gehören selbstständig agierende Programme zur Normalität.

Vielleicht sind Ihnen manche Vorgänge, welche mit künstlicher Intelligenz in Verbindung stehen, nicht bewusst oder schon so in den Alltag eingebunden, dass Sie denen keine Bedeutung mehr zumessen. Brauchen Sie auch nicht!

Jedenfalls will ich damit sagen, dass künstliche Intelligenz trotz aller finanziellen Probleme in der Industrie und im Dienstleistungssektor dort so fest verankert ist, dass KI nicht mehr zurückgebaut werden kann.

Derzeit kommen viele Menschen – ob Unternehmer oder Angestellte – auf mich zu und fragen, ob die künstliche Intelligenz noch Zukunft hat.
Die Frage ist berechtigt. Schließlich war zu Beginn des Hype um die künstliche Intelligenz in den Jahr 2018-19 noch (fast) Vollbeschäftigung und die Entwicklungsbudgets schienen unendlich zu sein.

Die Grundlagen moderner Entwicklungen lassen sich durch Finanz- und Wirtschaftskrisen nicht aufhalten. Es war in den letzten Jahrhunderten so, dass durch großen Krisen die bedeuteten Erfindungen hervorgingen.

KI wird durch die Krise neuen Schub gekommen

Der Fokus wird sich ändern: die weitere Entwicklung selbstfahrender Autos wird sicherlich ein wenig in den Hintergrund rücken. Immer mehr Automobilhersteller werden Kooperationen eingehen (müssen) und somit wird auch das Wissen im Bereich des autonomen Fahrens geteilt.

Natürlich wird auch es auch in der Mobilität weitere bahnbrechende Fortschritte geben, jedoch nicht in dem Tempo wie vor dem Krisenjahr 2020.

Entwicklungskosten werden branchenübergreifend reduziert. Der Fokus wird naturgemäß zunächst auf der Rendite liegen – da haben Forschungen keine gute Karten.

Nur wenige Firmen werden nach der derzeitigem Stand Gelder für Entwicklungen übrig haben, die nicht innerhalb kürzester Zeit Unmengen an Geld in die Kasse bringen.

Künstliche Intelligenz sehe vielmehr dort einen Entwicklungsschub, wo die Technik dem Menschen im Alltag hilft und ihn unterstützt. Billige Arbeitskräfte werden noch stärker durch Maschinen ersetzt. Intelligente Maschinen werden den direkten Alltag der Menschen weiter verändern.

Industrielle Roboter werden noch schlauer und Smartphones noch mehr das virtuelle Leben mit der unserer Realität verschmelzen. Direkte Anwendungen werden optimiert, aber ganz neue Entwicklungen länger dauern.

Letztlich lässt sich die künstliche Intelligenz nicht aufhalten! Die derzeitige Wirtschafts- und Finanzkrise wird der KI neuen Schub verleihen. Nicht mehr in Schallgeschwindigkeit, sondern in den Schritten, die die Akzeptanz der künstlichen Intelligenz beim Bürger erhöhen.

Künstliche Intelligenz oder künstliche Dummheit?

Eine der wichtigsten Fragen von heute ist, wie umfangreich Künstliche Intelligenz (KI) eingesetzt wird und welche Gefahren daraus entstehen können.

Eines der Anliegen der KI-Forschung ist denn auch, neue Wege der Interaktion zwischen Robotern, Software und Mensch zu finden.

Der Grundstein einer jeden Künstlichen Intelligenz ist bisher der Mensch. Dies ist auf den ersten Blick beruhigend. Spannend und mystisch wird es, wenn die Künstliche Intelligenz anfängt zu lernen und eigenständig Daten oder Bilder deutet. Ab einem gewissen Punkt ist der Menschen außen vor!

Die Entwickler der Künstlichen Intelligenz sollten zwar Ihren Programmiercode kennen, jedoch entwickelt sich die Software mit den eigenen Erfahrungen weiter. Vergleichbar mit einem Kind: Die Natur und Eltern geben dem Kind Wissen mit, aber Lernen und Rückschlüsse zieht der Jugendliche selbst.

KI-Entscheidungen lassen sich nur interpretieren

Dies auf die KI übertragen, ist noch eines der größten Herausforderungen. Entscheidungen von Computern zu verstehen und zu interpretieren, warum dieser in der Situation so gehandelt hat, ist ein eigener Zweig der KI-Forschung. Hier steht die Entwicklung sicherlich noch am Anfang.

Treten die ersten Rechtsfälle in Verbindung mit Künstlicher Intelligenz auf, dann wird es spannender denn je. Richter werden fragen, warum der Computer so handelte. Nach meinem heutigen Kenntnisstand kann man nur Antworten mit Annahmen und Wahrscheinlichkeiten präsentieren. Eine Herausforderung für jedes demokratisches Rechtssystem, wo es nur “ja” oder “nein” als Antwort gibt.

Wenn wir diese neuen Techniken und ihre Auswirkungen besser verstehen wollen, dann sollten wir zuerst die Lerndaten sichten. Zumeist verbirgt sich dort der Grundstein für Interpretationen oder Handlungen der Künstlichen Intelligenz.

Es gibt Fälle, wo der KI Rassismus vorgeworfen wird. Dies ist kompletter Unsinn. Entweder ist der Quellcode entsprechend verfasst oder die Basisdaten waren unzureichend. Werden dunkelhäutige Menschen als Affen angesehen, liegt es zumeist daran, dass in der Lernphase überwiegend hellhäutige Personen als Vorlage dienten. Waren dann noch Zoobesuche im Spiel und Affen wurden als solche markiert, dann ist das Ergebnis nicht verwunderlich.

Als Fazit kann man sagen: Die Künstliche Intelligenz ist nur so schlau wie die zur Verfügung gestellten Daten. Je mehr Lerndaten und Erfahrungen ein System hat, desto treffender werden die Entscheidungen.

KI steht bei Auswertung von Bildern immer wieder vor Herausforderungen

Was für Menschen auf Bildern logisch und klar erscheint, kann für die Künstliche Intelligenz eine riesige Herausforderung darstellen.

Bildrauschen und Wissenslogik erfordern neue Lösungswege

Grundsätzlich stellen zwei Themenbereiche die Künstliche Intelligenz bei der Bildauswertung vor mehr oder weniger große Probleme. Dies ist einmal die Aleatorik (zufälliges Rauschen an Gegenständen) und das epistemische Modell.

Epistemische Logik ist zum Beispiel, wenn die Künstliche Intelligenz eine Straße und den danebenliegenden Bürgersteig nicht unterscheiden kann, da beide Elemente aus Asphalt sind.

In 3D-Aufnahmen kann man dies vielleicht durch die dritte Dimension lösen. Stehen jedoch immer solche Bildquellen zur Verfügung? Wohl nur in den wenigsten Fällen.

Auch ist die Live-Auswertung beim autonomen Fahren wegen fehlender Rechenleistung und einer gewissen Unschärfe bis heute nicht in der Lage, die 3. Dimension in dieser Feinheit auszuwerten.

Im Allgemeinen kann man dieses Problem in der Lernphase lösen, wenn man dem System weitere Daten zur Verfügung stellt und sich der Algorithmus mit Wahrscheinlichkeiten nähert, dass in unserem Beispiel neben der Fahrbahn ein Bürgersteig befindet.

Wenn es letztlich um die Sicherheit von Mensch, Objekten und Maschinen geht, sind Wahrscheinlichkeiten allein nur ein schlechter Lösungsansatz.
In solch einem heiklen Umfeld sind weitere Sicherheiten einzubauen. Ob es Radarelektronik ist oder in den Bereich von Abstandssensoren geht, muss im Zweifelsfall getestet werden.

Bei der reinen Bilderkennung wie Röntgenaufnahmen oder ähnliches, kann nur durch eine erweiterte Lernphase der Algorithmus im Zaum gehalten werden.

Aleatorik einfacher lösbar

Das zufällige Rauschen in Bildern (Aleatorik) lässt sich in vielen Fällen mit höheren Auflösungen eindämmen. Da ist aber auch zu beachten, dass auch dies wieder andere Fehlerquellen auslösen kann. Mit einer zu hohen Genauigkeit kann man sich auch wieder neue Problemfelder schaffen – abhängig vom vorliegenden Bildmaterial.

Zur Erklärung: In der Aleatorik ist mit Unschärfe nicht das komplette Bild gemeint, sondern die Abgrenzung von Gegenständen zueinander. So kann eine Ampelanlage oder ein Baumstamm von der Software zackig oder stufig wahrgenommen werden. Für einen Menschen kein Problem, jedoch für die Programmlogik ein nicht zu unterschätzender Störfaktor.

Wenn genügend Rechenleistung zur Verfügung steht, ist häufig die eleganteste Lösung die Aleatorik softwaremäßig zu lösen. Mit Hilfe der Künstlichen Intelligenz und einer umfangreichen Lernphase lässt sich das Bildrauschen minimieren.

Instiktive Handlungen nur unter Laborbedingungen

Beide Themenbereiche sind gerade in der Mobilitätsbranche von großer Bedeutung. Starkregen oder gar Schneefall sind für die Bilderkennung im Bereich der Künstlichen Intelligenz bisher kaum lösbare Probleme. Für den Menschen ist es instiktiv klar, dass eine Schneeflocke auf der Scheibe oder auf einem Sensor kein Dilemma darstellt – was wie kann man die Künstliche Intelligenz in einem autonomen Fahrzeug daran hindern, in diesem Fall eine Notbremsung einzuleiten.

Nach meinem heutigen Kenntnisstand werden letztlich nur die Kombination aus mehreren Systemen eine sichere Fortbewegung sicherstellen. Bis die Künstliche Intelligenz soweit ist und menschliche Instinkte im Straßenverkehr zuverlässig deuten kann, werden noch Jahre vergehen.

Wenn Aleatorik und die Probleme der epistemischen Wissenslogik gelöst sind, ist ein riesiger Schritt in Richtung zum komplett autonom fahrenden Regional- und Fernzug getan. Im Gegensatz zum Straßenverkehr sind die Regeln und Fehlerquellen im Schienenverkehr überschaubarer.

Komplexität nicht zu unterschätzen

Mir ist bewusst, dass die Thematik viel komplexer ist. Um Laien in das Thema einzuführen, habe ich mir erlaubt, nur die gröbsten Baustellen zu erwähnen.